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PAPER NO. 24

THE TRANSVERSE RESPONSE OF THE LUMBAR
SPINE UNDER LONGITUDINAL LOADS

H. E. Krause and M, Shirazi

University of Dayton Research Institute
Dayton, Ohio

ABSTRACT

A novel continuous model of the spine is presented, The trans-
verse motion in the sagittal plane of the spine of sitting human subjects
exposed to vertical vibrations reveaied considerable bending along the
lumbar spine and negligible bending along the thoracic spine. There-
fore, the model consists of a curved rod, representing the lumbar: spine,
longitudinally loaded by a mass, representing the thorax. The differen-
tial equation of the transverse motion was derived and solved by making
a product agssumption. No transverse digsplacemerts and no bending
moment was agssumed at the pelvic end, At the thoracic end, a shear
force and a bending moment are applied, representing translatory and
rotatory inertia of the attached rib cage.

Eigenfunctions and eigenvalues depend on longitudinal loading. The
eigenfunctions correlate well with data obtained over a large range of
experimental conditions. The solution for the time distribution contains
various distinct harmonic components if an external force, alternating
sinusoidally at only one discrete frequency, is applied, This effect is
due to a periodic parameter in the differential equation.

INTRODUCTION
Most observed spinal injuries result from external forces applied
in the longitudinal direction, Long-time exposure to moderate external

loads can develop slowly increasing damages. Compression of the

spinal column is the prevailing stress mode.
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In recent tests, Vulcan et al, 1 observed considerable bending of the
spine of human cadavers that were exposed to spinal-direction impact.
Considerable bending of the lumbar spine of sitting human subjects under
vertical vibrations was observed by Krause. 2 In view of these findings
it se=ms that transverse displacements as well as longitudinal displace-

ments should be considered.

Ber:ding relieves stress in certain areas and increases it in others,
if it is superimposed on existing compression, Therefore, bending may
be the factor that determines the location of injury if it is present to a

significant magnitude,

This is an exploratory study in which only transverse responses
under longitudinal loads will be considered. In particular, we attempt
to account quantitatively for the effect of a longitudinal load and initial
curvature on the bending stress, its distribution along the lumbar spine,
and the conditions of dynamic instability. Longitudinal responses will
be neglected. It has been shown by Bololtin3 that transverse vibrations
are significantly disturbed by longitudinal vibrations only at resonance
of the latter. Longitudinal vibrations can therefore be neglected if we
assume their resonant frequencies and those of the transverse vibrations

do not coincide,

SPINAL MODEL CONFIGURATION

For a hypothesis, a spine model is assumed that consists of two
parts (Figure 1), They are a curved rod to represent the lumbar spine,

and a rigid mass connected with it that represents the thorax,

Experimental observations have led to this configuration (Figure 2).
The amplitude of the first derivative of the transverse displacement of
the thoracic spine above the 10th thoracic vertebra of a sitting human
subject under vertical vibrations from 10 to 40 Hz is almost constant.
The second derivative is, therefore, almost zero and hardly any bend-
ing exists. It is assumed that the rib cage increases the bending stiff-

ness of that part of the spinal column.
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Figure 1, Model Configuration for Lumbar Spine and Thorax.
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It should be noted that Figure 2 includes the torsional deflection
under the same experimental conditions. A nodal point can be observed
around the 6th and 5th thoracic vertebra. This point was observed for
13 frequencies within the test range from 10 and 40 Hz and for 30 ex-
periments at each frequency, This nodal point coincides with a peak at
that point of almost all published curves of injury incidence along the

spinal column,
EQUATiON OF MOTION

The equation of transverse motion of a curved beam has been pre-

sented by Bolotin. 3 It is

EI-Q-—Y-+P(1) »"2 == P (1) —2 42vo (1)

ax4 ax2  at? “dx2
where

E = modulus of elasticity

I = aereal moment of inertia

v(x,t) = transverse displacement from initial curvature

vo(x) = initial curvature

P(t) = longitudinal load (compression positive)

n = mass per unit length of rod.

The function v (x) = 0 if the beam is straight, The nonhomogeneous

equation (1) reduces to a homog=neous equation

4 2, :
g ppnie y, By, | (2
x4 ax2 3:2

A product assumption

(00]
vizt)= v, (x)Tq(t) (3)
n=|
where
Vn(x) = spatial distribution

Tplt)

time distribution,
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' decomposes the partial differential equation into a system of ordinary

ones. They are

(4)
El y plx) + ﬂ..lv _.gnvnso (4)

Ta+ 827,20

(5)
P(t) is here considered to be constant.
The solutions for these equations are
A, Spatial Distribution
Va{Xx)1=Dyp sinrgx+Dyy cosr, x (6)

+ D3p sinhr, x+ Dgp coshr, x

The r; and r, are

2
r1,2 v* ZE1 +V (Eﬁf)z I (7

B. Time Distribution

Tn(t) = Aln COSQnt + Am singnt (8)
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where
n = natural frequencies
Dyn = constants
r,, r, = eigenvalues

The constants D, will have to be determined by the boundary con-
ditions, Two different sets of boundary conditions will be considered in
the following sections. A solution for the homogeneous (that is, straight
beam) equation of motion and for the nonhomogeneous (that is, curved
beam) equation of motion will be derived for each set of boundary

conditions.

RESTRAINED THORAX

The thorax is suﬁposed to be restrained so that no transverse dis-
placement or rotation can occur., The idealized model for the lumbar
spine under these conditions is depicted in Figure 3. This configuration
has been treated extensively by Bolotin3 and other researchers in the
field of dynamic instability with the inclusion of nonlinear damping and

nonlinear inertia.

A. Straight Rod

The solutions for the constants in the spatial distribution equation
for the straight beam (equation 6é) are determined by the boundary con-
ditions which are

V(L) = V(0) = ©
2 2 9)
v
N e L L
dx x=4 dx x=0

Transverse displacements and bending moments are not admitted

at either end of the ltmbar spine. This furnishes the equations:
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Figure 3. Model Configuration of Lumbar Spine, with
Thorax Restrained from Moving.
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V(t) = 0 = D, sinr,f + Dycosr, !
+ Dysinhry £+ Dycoshry t (10)
V(0) = 0 = D+ D, (11)
1 vty = 0 = - D, 1‘22 sin ryf - D, rzz cos vy {
ﬁ (12)
: + Dy ry?sinhry; 1+ Dgry2coshr ¢
t vy{o) = 0 = - D; l’zz + Dy r‘z . (13)
These are four homogeneous equations for the four unknowns. In

order to obtain solutions, the characteristic determinant has to be zero.

0 1 0 1
0 _rzz 0 rlz
A =0 =
sin rzl. cos rzl sin hrlz cos hrl!.
2 . 2 2 2
~r, sin rzz -r, cos rzt +r1 sin hrlz r, cos hrlt
2 2.2 . R
A =+ (rl + rz ) sin rz£ sxnhrlt = 0 (14)

This condition is met if
r,t = an (15)

or
(16)

L]
o

rll

The latter condition requires P =z 0 and is, therefore, trivial., The

eigenvalues are:

LN A Gt sy,
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This equation can be solved for the natural frequencies

2
, (2 (EN? _p?_ p?
G - 4ElL ) (18)

It is apparent that these frequencies depend on P, If P is zero, we
obtain

2 _ n 4 EI 19)
O = )Y 5 - (

The frequency equation can be rearranged to assume the following
form:
02 = (nﬂ’lt %l_ ntr 2 _E (20)

n T 'q—)u :

The natural frequencies equal those of the straight beam except for

The relationship between Q, and P is purabolic. The solution v{x, t)
is of a periodic nature if @ is real and it is of a non-perivdic nature
i{Q is imaginary. The transition between both regimes occurs when
Q = 0. This is the case if

2

- - nt %
P = Pcrit e n(') El. {21)

Fer P> Pc’rit we have buckling and for P ¢ Pcrit the beam is stable.
Pc rit is equal to the Euler buckling load for this type of beam support.
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The dependence of the natural {requencies on the longitudinal load
may be of practical consequence. For example, the response of the
spine to external forces seems to be different under differ_ent. sustained
vertical loads as they occur in a dive, pullout, or tight curve. The
amplitude of free vibrations is expected to change with the natural fre-
quency if energy is conserved during transition from one longitudinal
load to another. '

The eigenfunctions for this model are
Vn(x) = sinry, x. ‘ {(22)

They are identical with the eigenfu:ctions of the unloaded straight beam.
It is easy to see that these functions are orthogonal.

B. Curved Rod

The initial curvature will be considered in the following paragraph
by solving the nonhomogeneous equation of motion, equation {1).
The boundary conditipns remain the same.

Again, a product assumption is made:

ix, t) ~‘§, (AR S (23)

vn"’" represents the eigenfunctions that are now known i ~om the pre-
ceding paragraph. T, (t) are solutions that we seek. Considering the
orthogonality of the cigenfunctions, this assumption leads %o

I: azvo
P e V (x)dx
0 datz R , 29

L 2
quva () dx
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The initial curvature may be represented by a Fourier sine series,

This series contains only sine functions because the initial curvature can
be an odd func\tion with

v (0) = V (1) =
The second derivative of the initial curvature is

d2vylx) @

o B¥ (25)
2 - sin — X s
dxz n§| Son ! i

which results in a set of differential equations

. nw 4El nr. 2 P(t)y Plthgen (26)
T+ T [ B e

These equations are uncoupled due to the orthogonality of the eigen-

functions and due to the orthogonality between the eigenfunctions and the

Fourier components of the initial curvature, With the initial conditions

vix,0)s= fl(x) ; (-a-!-)

& (27)

we obtain the solution

1
T, (1= 5;? (ffam sin -'-'i!xdx) sin @ ot
0

WRRICAIA, vr. Sl o PR

P
..!2_1 (x)sin'l;ixd X —g-‘lg—]cosanf.*.
o

(R
28
i8> (28)
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The longitudinal load P, as well as the modulus of the Fourier compo-
nents, is contained in the coefficient of cogQ nte Thus both of them have

an effect on the amplitude of the free motion.

_ . . th . .
The coefficient of the cosine function of the n h eigenmode contains

th
only the Fourier coefficient of the n component of the initial curvature.

If some of these components are zero, then the equivalent eigenmode
amplitude will be unaffected by either the initial curvature or the longi-

tudinal load.

The spine can assume various equilibrium positions. Each one
will produce a different shape of ics initial curvature. This results in
different sets of g on Values. The amplitudes of the various eigenmodes
and locations of maximum bending stress will therefore be dependent on

the attitude of the subject.

In particutars, the interpretation of test results with animai sub-
jects should take differences in curvature between man and animal into

consgideration,

C. Dynamic Instability

When a time variable force is added to the longitudinal load, then

P (1) =P+ Pysinut - (29)

The solution that was just discussed does not apply. The differential

equation for the time distribution is now

Y n 4 l 2
F+1 [0 S - (B (P4py sinet) - ]
{ w2
(P+pP, sinm)-‘-’-—z .
ut (30)
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This equation represents a Mathieu equation except for the addition of a
forcing function. Due to the multiplicative connection of T and its co-
efficient, the solution contains also harmonics that are of different fre-
quency than the parameter variation., Which one of these harmonics
dominates the solution depends on the relation of the parameter fre-
quency to the natural frequeacy, Unbounded solutions can be expected
at and around frequencies that, according to Bolotin3, are
2

0 = S » k=1, 2, 3... {31)
The solution is of frequency  if k is even and of frequency /2 if k is
odd. Therefore there are frequencies of parametric resonance in addi-
tion to the regular resonant frequencies, These frequencies are load-
dependent. The relationship between the first resonant frequency and
the longitudinal load, equation (20), is represented by the solid para-
bola (Figure 4) that intersects the abscissa at w/Q = 1. The other

parabolas represent locations of possible parametric resonance.

Instability is also possible in areas around these parabolas. Their
width depends on the amplitude P0 of the load variation, Theée regions
of instability are indicated by the shaded areas in Figure 4. Most
dangerous, is the first region of instability that is represented by the

first region on the right,

Approximate equations for the houndaries between the stable and

unstable regions atre given by BolotinB. They are:

1st Region of Instability:

“'2°~/u--§mi'--;-) (32)
€
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2nd Region of Instability:

wel u--g-)(l+i3cz)

j € (33)
vea. /1= Tr0-243)
3rd Region of Instability:
2o fu-B -2
LA S PVAY PE)U a+9.’ (34)
. Po .

8 evm——

z(P-PE) i Pg Euler buckling Load .

Parametric resonances were occasionally observed when the trans-
verse motion of the spine of a human subject under vertical vibrations
was observed. The difference of impedance curves as obtained through

vibration and impact tests could perhaps be explained through para-

metric excitation.

Also the capability of the spine to transfer energy at various fre-
quencies may be of some consequence, in particular with respect to
subsystems that are coupled to the spine. Conversely, coupled sub-

systems may distort parametric resonances.

UNRESTRAINED SPINE

The model will now be extended to include the thorax without ex-
ternal restraints. The boundary conditions at the upper end of the rod
are determined by the inertia of the thoracic mass to transverse accel-

erations and the rotational inertia of the thorax (Figure 1), A longitu-
dinal force is acting at the lower end of the lumbar spine, The

configuration is somewhat idealized because whole-body accelerations
and rotations are assumed to be negligible. The equation of motion is

the same as in the previous case and the treatment will follow the
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same sequence of steps as before., The homogeneous equation of motion,
equation (2), (straight rod) will be solved first and the effects of the
longitudinal loading will be discussed. The second step is the solution
of the nonhomogeneous equation of motion, equation (1), and a discus-

sion of the results,

A. Straight Rod

Equation (2) applies in this case as well as the ordinary differen-
tial equations (4) and (5) that were derived from it, and the general
solution for the spatial distribution, equation (6), and time distribution,
equ :tion (7). The constants D, will have to be determined by the
boundary conditions which were discussed in the previous paragraph,

and are quantitatively defined by the following equations:

V(0)=V" (0,30 (35)
3 2
ey eem() :6)
ax” x={ ot xst

m-mass of thorax

3 52 (37)
(2B (Y
dxdtc x=t ax~ x=t

6 -—dynamic moment of inertia
of thorax

The characteristic equation as obtained through the usual manipulation

is
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(r|2+ :'22 ) [(-rf’ cosr 2!~asinr2! ) (r,2 sinhrl [|
—=Ar coshrll )-l-(r'acoshr |

-8sinhr'!)- (rzzslnrz.t +Mz cosrzt)]w

(38)
In this equation are
5 = mg?z (39)

The characteristic equation contains the natural frequencies as well as
the longitudinal load P which is contained in r; and r, (see equation 7).
The natural frequencies can therefore be determined as a function of the
longitudinai load. This was done by iteration. The results are presented
in Figure 5 by the solid curves. Arbitrary values were chosen for the
parameters. The only purpose of these preliminary numerical computa-
tions was to obtain a graphic picture of the relationship between load and
natural frequency. The numerical values for these computations, such as

the modulus of elasticity, static moment of inertia, etc. were rough es-

timates of the various spine materials.

The eigenfunctions for this set of boundary conditions are
3
‘ . Ton cmz,‘-&-a sinr A .
Vix)ssinr : p sin X
f,nCOshryd — Bsinhry

(41)

These eigenfunctions depend also on the longitudinal load. The first
eigenfunction at three different longitudinal loads is presented in
Figure 6. The numerical values for the various parameters were

chosen to represent a human subject. The length £ is 30. 48 cm which
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Figure 6. Eigenfunctions of Unrestrained Spine Model Under
Various Longitudinal Loads.
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represents the length of the average lumbar spine. The lowest of the
longitudinal loads, P;, is 27 lbs. or 12, 27 kp, which is about the weight
of the average human thorax, The load P, is three times that of P, and
the load P, is ten times that of P;. It is very obvious that these eigen-
functions depend very much on the longitudinal load. The curve for the
load P, is in shape similar to the transverse displacement distribution
along the lumbar spine of sitting human subjects under vertical vibra-

tion (Figure 2).

The bending moment along the spine in one of its eigenmodes is di-
rectly proportional to the second derivative of the eigenfunction. These de-
rivatives are plotted in Figure 7 for the same three longitudinal loads. It
is very obvious that these derivatives depend on the longitudinal load.  The
hending load is rather evenly distributed over the length of the lumbar
spine at small longitudinal loads. Peaks of bending loads appear as the
longitudinal load increases. The greatest peak occurs at the upper end
and a smaller one at the lower section of the lumbar spine. The peaks
increase with the longitudinal load and the lower peak moves farther down

the spine.

Statistical curves have been published that show the incidence of
vertebral injury along the lumbar and thoracic spine. These curves
differ somewhat from one author to the other., Hirsch and Nachemson4
arrive at a distribution along the lumbar spine that is fairly even,
Moffatt and Howards present one with an incidence of injury that is low
at the lower ond of the lumbar spine, increases slowly from there on up,
and increases rapidly around the 11th and 12th thoracic vertebra.
Another curve published by Higgins et al. 6 is similar to that of Moffatt
except for no injuries around the 4th lumbar vertebra and some injury

of the coccyx.

It seems that the differences of these curves may be due to differ-

ences in the magnitude of the longitudinal loads.
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After comparison with the second derivative of the eigenfunction,
one would expect the incidence curve of Hirsch and Nachemson to be
obtained from cases of relatively small longitudinal loading. The sec-
ond derivative of the eigenfunction crosses the zero line for two longitu-
dinal loads. This seems to reflect the zero incidence in Higgins' curve

around the 4th lumbar vertebra.
B. Curved Rod

In the previous discussion, we did not consider the right hand side
of equation (1). The nonhomogeneous equation cannot be solved exactly
by making a product assumption because it is not self adjoint. An ap-
proximate solution with such an assumption can be obtained. In this

case, the Galerkin method will be applied.

The equation of motion is rearranged to assume the form

4 2 2 2
el 22 £ p(1) "-—23 +p-‘3—§" +p 200 (y)eq. 12
ax¢ ax at dx2

A product assumption of the following nature is made

- N
viz,t)= T v, (x) T,(t) (43)
hs]

where the V,(x) are the previously determined eigenfunctions. This is

substituted into equation (42) which results in

Liv)= «(x,t), (44)

ex, t) is zero if such an assumption can satisfy equation (42) exactly,
and it is different from zero if it cannot do that, In this case the error
of an approximate solution with this assumption is minimized by im-

posing the conditions
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fL(V)Vn(x)dx:'o . nz1, ....N (45)
o

This requires the error e(x, t) along the length of the rod weighted by
the eigenfunctions and integrated over x to be zero. In other words,
equation (45) requires orthogonality between the residual and the eigen-

functions.

The variable x is eliminated through integration and a system of
coupled ordinary differential equations with t as the variable evolves.
These equations would not be coupled if the eigenfunctions of the ad-
joint problem would have been used for weighting functions. The coupled

equations are in matrix notation
{W} + -}‘— [an; ]"' (E [bni]+ i) [on ] {Ta} -
-P(1) [a,,i]"{n,.} (46)

!

!
. (4]

{(37)
2

! ‘d Vo
c,,,'fv,,v{'dx \ Aps [ —3 Vodu
0 o dn

The solution of this equation consists of the solution for the homo-
gencous equation plus a particular solution of the nonhomogencous

equation. An assumplien of the type

(‘rd: (T‘o ot (48)

for the homogeneous equations, and the usual manipulations, icads to

a solution of the type
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9 By sin (ukt 4 ). (49)

-
]
Ttz

1
The nk 3T¢ the amplitude ratios.

The right side of equation (46) is constant. Therefore, a constant

can be determined as a particular solution. This solution is

(Bi} = - P(t) {H]™ [aij]°‘ {Ai} (50)

(1) -

] -
- [aij] ! (El[bij] + P(t) [°ij1’ (1)

The complete solution is then

- N
Tixt) = L V) e m, sinfotd ¥ )+ B, (52)
n=! k=1

This can be rearranged and expandvd to assume the following form:
Vix.t) =q [Muy # Vauy + .. Vu ] sinfogt 4 ) ---

+q Muint Vi ¢ .. Vqugg] sin (ot ¢ 9)

T
+ L VB, (53)
n=)

The cigenfunctions of the curved rod under the specified boundary con-
ditions can be expressed as series of the eigenfunctions of the straight
rod weighted by the amplitude ratios as obtained during the solutior

for the time distribution.

The q, have to be determined using the initial conditions. Various
methods can be applied such as subdomain, Gaierkin, or a collocation

technique. In any case, the q, will finally be dependent on the Vn, that
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is the eigenfunctions, and on the Bn which are deiermined by the initial
curvature., Therefore the .. .plitudes of the free motions are affected
by both the iritial curvature and tae ioagitudinal load which is also part
of the Bn's and the eigenfunctions. The initial curvature of the spine
changes between different attitudes of a subject. The difference in re-
sponse between attitudes can be accounted for through the initial

curvature,

C. Dynamic Instability

The solution for the spatial and time distribution, equation (49),
applies only if P(t) is a constant, The differential equation for the time
districation, equation (46), will have to be solved by procedures such as
Hill's method, Of particular interest are areas of possible dynamic in-
stability, These ha. = rot been determined for this particular case.
However, these areac are usually around the lines of the natural fre-
quencies in Figure 5 and also around curves of twice the natural fre-
quency, fracticns of it, and at fraquencies that are the sums and
differences of the natural frequencies. Some of these conditions of

parametric instability are indicated by the broken lines in Figure 5.

CONCLUSIONS

It was the purpose of this discussion to investigate the possibilities
of accounting quantitatively for the effect of longitudinal loads on the
natural frequencies of transverse motions of the lumbar spine, as well
as for the effects of longitudinal loading and initial curvature on the

magnitude and distribution of bending along the lumbar spine,

Longitudinal loads, initial curvature and boundary conditions im-
posed on the lumbar spine seem to have significant effects on the mag-
nitude and distribution of bending in a dynamic environment., The type
of bending distribution curves that have been obtained seem to agree
with statistical curves of injury incidence along the lumbar spine. The

transverse displacement distribution along the lumbar spine under
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longitudinal loads agrees with experimental data, A more detailed
numerical adjusiment of the model to experimental data will be attempted.
In particular, major subsystems that are coupled to the spine will have

to be considered for this purpose. Because subsystems have an effect

on the boundary conditions and thus on the response of the spine, it
seems they have to be included because no experimental data are avail-

able that exclude coupling effects.

The natural frequency of transverse spine motions under longitudinal
loads is load-dependent. The natural frequency decreases in general
with increasing compreesive loading and increases with increasing ten-
sile loading. The type of natural frequency - longitudinal load relation-

ship depends to a great degree on the boundary conditions.

Pararnetric transverse resonances and dynamic instabilities can be

expected under a periodic longitudinal load.
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